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Abstract. Charmless hadronic decays of B mesons to a vector meson (V ) and a tensor meson (T ) are
analyzed in the frameworks of both flavor SU(3) symmetry and generalized factorization. We also make
comments on B decays to two tensor mesons in the final states. Certain ways to test the validity of the
generalized factorization are proposed, using B → V T decays. We calculate the branching ratios and CP
asymmetries using the full effective Hamiltonian including all the penguin operators and the form factors
obtained in the non-relativistic quark model of Isgur, Scora, Grinstein and Wise.

1 Introduction

In the next few years B factories operating at KEK and
SLAC will provide plenty of new experimental data on B
decays. It is expected that an improved new bound will
be put on the branching ratios for various decay modes
and many decay modes with small branching ratios will
be observed for the first time. Thus more information on
rare decays of B mesons will be available soon. Exper-
imentally several tensor mesons have been observed [1],
such as the isovector a2(1320), the isoscalars f2(1270),
f ′
2(1525), f2(2010), f2(2300), f2(2340), χc2(1P ), χb2(1P )
and χc2(2P ), and the isospinors K∗

2 (1430) and D∗
2(2460).

Experimental data on the branching ratios for B decays
involving a vector (V ) and a tensor meson (T ) in the final
state provide only upper bounds, as follows [1]:

B(B+ → ρ+D∗
2(2460)

0) < 4.7 × 10−3,

B(B0 → ρ+D∗
2(2460)

−) < 4.9 × 10−3,

B(B+ → ρ0K∗
2 (1430)

+) < 1.5 × 10−3,

B(B0 → ρ0K∗
2 (1430)

0) < 1.1 × 10−3,

B(B+ → φK∗
2 (1430)

+) < 3.4 × 10−3,

B(B0 → φK∗
2 (1430)

0) < 1.4 × 10−3,

B(B+ → ρ0a2(1320)+) < 7.2 × 10−4. (1)

In particular, the process B → K∗
2γ has been observed for

the first time by the CLEO Collaboration with a branch-
ing ratio of (1.66+0.59

−0.53 ± 0.13) × 10−5 [2].
There have been a few works [3–5] studying two-body

B decays involving a tensor meson T (JP = 2+) in the
final state using the non-relativistic quark model of Isgur,
Scora, Grinstein and Wise (ISGW) [6] in the framework
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of factorization. Those works considered only the tree di-
agram contribution. However, in the charmless |∆S| = 1
decays, the penguin diagram contribution is enhanced by
the CKM matrix elements V ∗

tbVts and becomes dominant.
In a recent work [7], we have studied B decays to a

pseudoscalar meson and a tensor meson. In this work,
the previous analysis is extended to charmless hadronic
decays of B mesons to a vector meson and a tensor me-
son in the frameworks of both flavor SU(3) symmetry and
the generalized factorization. We also comment on B de-
cays to two tensor mesons in the final states. First, a
model-independent analysis in B → V T decays is pre-
sented, purely based on the flavor SU(3) symmetry. Then
we calculate branching ratios and CP asymmetries for
both |∆S| = 1 and ∆S = 0 decays, using the full effec-
tive Hamiltonian including all the penguin operators, and
the ISGW quark model to obtain relevant form factors. In
order to bridge the flavor SU(3) approach and the factor-
ization approach, we present a set of relations between a
flavor SU(3) amplitude and a corresponding amplitude in
the factorization in B → V T decays. Emphasizing the in-
terplay between both schemes, we propose certain ways to
test the validity of both approaches in future experiment.

This work is organized as follows. In Sect. 2 we discuss
our frameworks and make some comments on B → TT
decays. In Sect. 3 we present a model-independent anal-
ysis of B → V T decays based on SU(3) symmetry. In
Sect. 4 the two-body decays B → V T are analyzed in the
framework of generalized factorization. The branching ra-
tios and CP asymmetries are calculated using the form
factors obtained in the ISGW quark model. Finally, in
Sect. 5 we conclude our analysis.

2 Framework

In this analysis of B → V T decays, we use the same frame-
works, such as the flavor SU(3) approach and the general-
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ized factorization scheme, and the same notation as those
used in our previous analysis of B → PT decays [7]. Thus,
we refer to [7] for the notation used in our frameworks.

Since in B → V T decays there are three possible par-
tial waves with l = 1, 2, 3 in the final state, B → V T
processes are more complicated than B → PT processes.
For the SU(3) analysis of B → V T decays, these partial
waves in the final state need to be separated out. We will
assume that this can be done by certain methods such as
the one using angular distributions in B → V V decays
[8].

We use the following phase convention for the vector
and the tensor mesons:

ρ+(a+
2 ) = ud̄, ρ0(a0

2) = − 1√
2
(uū − dd̄),

ρ−(a−
2 ) = −ūd,

K∗+(K∗+
2 ) = us̄, K∗0(K∗0

2 ) = ds̄, K̄∗0(K̄∗0
2 ) = d̄s,

K∗−(K∗−
2 ) = −ūs,

ω =
1√
2
(uū+ dd̄), φ = ss̄,

f2 =
1√
2
(uū+ dd̄) cosφT + (ss̄) sinφT ,

f ′
2 =

1√
2
(uū+ dd̄) sinφT − (ss̄) cosφT , (2)

where the mixing angle φT is given by φT = arctan(1/
(21/2)) − 280 ≈ 7◦ [3,9].

In the ISGW quark model, the hadronic matrix ele-
ments for B → V T decays are parameterized as [6]:

〈0|V µ|V 〉 = fV mV εµ, (3)
〈T |jµ|B〉 = ih(m2

P )ε
µνρσε∗

ναp
α
B(pB + pT )ρ(pB − pT )σ

+ k(m2
P )ε

∗µν(pB)ν

+ ε∗
αβp

α
Bpβ

B

[
b+(m2

P )(pB + pT )µ

+ b−(m2
P )(pB − pT )µ

]
, (4)

where jµ = V µ − Aµ. V µ and Aµ denote a vector and
an axial-vector current, respectively. fP denotes the de-
cay constant of the relevant pseudoscalar meson. h(m2

P ),
k(m2

P ), b+(m
2
P ), and b−(m2

P ) express the form factors for
the B → T transition, FB→T (m2

P ), which have been cal-
culated at q2 = m2

P (qµ ≡ pµ
B − pµ

T ) in the ISGW quark
model [6]. pB and pT denote the momentum of the B me-
son and the tensor meson, respectively. We note that the
matrix element

〈0|jµ|T 〉 = 0, (5)

because the trace of the polarization tensor εµν of the ten-
sor meson T vanishes and the auxiliary condition holds,
pµ

T εµν = 0 [10]. Therefore, in the generalized factoriza-
tion scheme, just as in the case of B → PT decays, the
decay amplitudes for B → V T can be considerably sim-
plified, compared to those for other two-body charmless
decays of B mesons such as B → PP , PV , and V V : Any
decay amplitude for B → V T is simply proportional to

the decay constant fV and a certain linear combination of
the form factors FB→T , i.e., there is no such amplitude
proportional to fT × (form factor forB → V ).

We would like to make comments on decays of B
mesons to two tensor mesons in the final state. Since
〈0|jµ|T 〉 = 0, in the factorization scheme the decay ampli-
tude for B → TT decays always vanishes:

〈TT |Heff |B〉 ∼ 〈T |jµ|B〉〈0|jµ|T 〉 = 0. (6)

A non-zero rate for any B → TT decay would arise from
non-factorizable effects or final state interactions. There-
fore, search for any B → TT modes in future experiments
can provide a critical test of the factorization ansatz.

3 Flavor SU(3) analysis of B → V T decays

The coefficients of the SU(3) amplitudes in B → V T are
listed in Tables 1 and 2 for strangeness-conserving (∆S =
0) and strangeness-changing (|∆S| = 1) processes, respec-
tively. For the notation of the SU(3) amplitudes, we refer
to [7].

Note that the contributions of the SU(3) amplitudes
with the subscript V vanish in the framework of factor-
ization, because those contributions contain the matrix
element 〈T |Jweak

µ |0〉 which is zero, see (5). We will present
some ways to test the validity of both the SU(3) approach
and the factorization scheme in future experiments.

Among the ∆S = 0 amplitudes, the tree diagram con-
tribution is expected to be largest so that from Table 1 the
decays B+ → ρ+a0

2, ρ
+f2, and B0 → ρ+a−

2 are expected
to have the largest rates. Here we have noticed that in
B+ → ρ+f

(′)
2 decays, cosφT = 0.99 and sinφT = 0.13,

since the mixing angle φT ≈ 7◦. The amplitudes for the
processes B → φf

(′)
2 , φa2, and K∗K∗

2 have only pen-
guin diagram contributions, so they are expected to be
small. In principle, the penguin contribution (combined
with the smaller color-suppressed EW penguin) pT ≡ PT −
(1/3)PEW,T can be measured in B+(0) → K̄∗0K

∗+(0)
2 .

The tree contribution (combined with much smaller color-
suppressed EW penguin) tT ≡ TT + PC

EW,T are measured

by the combination A(B+(0) → K̄∗0K
∗+(0)
2 ) − A(B0 →

ρ+a−
2 ). The amplitudes for B0 → ρ0f ′

2 and ωf ′
2 have the

color-suppressed tree contributions, CT (CV ), but are sup-
pressed by sinφT so that they are expected to be small.
We shall see that these expectations based on the SU(3)
approach are consistent with those calculated in the fac-
torization approximation. However, there exist some cases
in which the predictions based on both approaches are in-
consistent. Note that in Table 1 the amplitudes for B0 →
ρ−a+

2 and B+(0) → K∗+(0)K̄∗0
2 can be decomposed into

linear combinations of the SU(3) amplitudes as follows:

A(B0 → ρ−a+
2 ) = −TV − PV − (2/3)PC

EW,V , (7)

A(B+ → K∗+K̄∗0
2 ) = A(B0 → K∗0K̄∗0

2 )

= PV − (1/3)PC
EW,V . (8)
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Table 1. Coefficients of SU(3) amplitudes in B → V T (∆S = 0). The coefficients of the SU(3) amplitudes
with the subscript V are expressed in square brackets. As explained in Sect. 2, the contributions of the SU(3)
amplitudes with the subscript V vanish in the framework of factorization, because those contributions contain
the matrix element 〈T |Jweak

µ |0〉, which is zero. Here c and s denote cosφT and sinφT , respectively

B → V T factor TT [TV ] CT [CV ] ST [SV ] PT [PV ] PEW,T [PEW,V ] P C
EW,T [P

C
EW,V ]

B+ → ρ+a0
2 − 1√

2
1 [1] 0 1, [−1] [1] 2

3 ,
[ 1

3

]

B+ → ρ+f2
1√
2

c [c] [2c +
√
2s] c, [c]

[
c−√

2s
3

]
2c
3 ,

[− c
3

]

B+ → ρ+f ′
2

1√
2

s [s] [2s − √
2c] s, [s]

[√
2c+s
3

]
2s
3 ,

[− s
3

]

B+ → ρ0a+
2 − 1√

2
[1] 1 0 −1, [1] 1 1

3 ,
[ 2

3

]

B+ → ωa+
2

1√
2

[1] 1 2 1, [1] 1
3 − 1

3 ,
[ 2

3

]

B+ → φa+
2 1 0 0 1 0 − 1

3 0
B+ → K∗+K̄∗0

2 1 0 0 0 [1] 0
[− 1

3

]
B+ → K̄∗0K∗+

2 1 0 0 0 1 0 − 1
3

B0 → ρ+a−
2 −1 1 0 0 1 0 2

3

B0 → ρ−a+
2 −1 [1] 0 0 [1] 0

[ 2
3

]
B0 → ρ0a0

2 − 1
2 0 1, [1] 0 −1, [−1] 1, [1] 1

3 ,
[ 1

3

]

B0 → ρ0f2 − 1
2 0 c, [−c] [−(2c +

√
2s)] −c, [−c] c,

[
−c+

√
2s

3

]
c
3 ,

[
c
3

]

B0 → ρ0f ′
2 − 1

2 0 s, [−s] [−(2s − √
2c)] −s, [−s] s,

[
− (

√
2c+s)
3

]
s
3 ,

[
s
3

]

B0 → ωa0
2

1
2 0 1, [−1] 2 1, [1] 1

3 , [−1] − 1
3 ,

[− 1
3

]

B0 → ωf2
1
2 0 c, [c] 2c, [(2c +

√
2s)] c, [c] c

3 ,
[

c−√
2s

3

]
− c

3 ,
[− c

3

]

B0 → ωf ′
2

1
2 0 s, [s] 2s, [(2s − √

2c)] s, [s] s
3 ,

[
s+

√
2c

3

]
− s

3 ,
[− s

3

]

B0 → φa0
2

1√
2

0 0 1 0 − 1
3 0

B0 → φf2
1√
2

0 0 c 0 − c
3 0

B0 → φf ′
2

1√
2

0 0 s 0 − s
3 0

B0 → K∗0K̄∗0
2 1 0 0 0 [1] 0

[− 1
3

]
B0 → K̄∗0K∗0

2 1 0 0 0 1 0 − 1
3

Table 2. Coefficients of SU(3) amplitudes in B → V T (|∆S| = 1)

B → V T factor T ′
T [T

′
P ] C′

T [C
′
V ] S′

T [S
′
V ] P ′

T [P
′
V ] P ′

EW,T [P ′
EW,V ] P C′

EW,T [P
C′
EW,V ]

B+ → K∗+a0
2 − 1√

2
1 [1] 0 1 [1] 2

3

B+ → K∗+f2
1√
2

c [c] [2c +
√
2s] c, [

√
2s]

[
c−√

2s
3

]
2
3c,

[
−

√
2s
3

]

B+ → K∗+f ′
2

1√
2

s [s] [2s − √
2c] s, [−√

2c]
[

s+
√

2c
3

]
2
3s,

[√
2c
3

]

B+ → K∗0a+
2 1 0 0 0 1 0 − 1

3

B+ → ρ+K∗0
2 1 0 0 0 [1] 0

[− 1
3

]
B+ → ρ0K∗+

2 − 1√
2

[1] 1 0 [1] 1
[ 2

3

]

B+ → ωK∗+
2

1√
2

[1] 1 2 [1] 1
3

[ 2
3

]

B+ → φK∗+
2 1 0 0 1 1 − 1

3 − 1
3

B0 → K∗+a−
2 −1 1 0 0 1 0 2

3

B0 → K∗0a0
2

1√
2

0 [−1] 0 1 [−1] − 1
3

B0 → K∗0f2
1√
2

0 [c] [2c +
√
2s] c, [

√
2s]

[
c−√

2s
3

]
− c

3 ,
[
−

√
2s
3

]

B0 → K∗0f ′
2

1√
2

0 [s] [2s − √
2c] s, [−√

2c]
[

s+
√

2c
3

]
− s

3 ,
[√

2c
3

]

B0 → ρ−K∗+
2 −1 [1] 0 0 [1] 0

[ 2
3

]
B0 → ρ0K∗0

2 − 1√
2

0 1 0 [−1] 1
[ 1

3

]

B0 → ωK∗0
2

1√
2

0 1 2 [1] 1
3

[− 1
3

]

B0 → φK∗0
2 1 0 0 1 1 − 1

3 − 1
3
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As previously explained, in factorization the rates for these
processes vanish because all the SU(3) amplitudes carry
the subscript V . Non-zero decay rates for these processes
would arise from non-factorizable effects or final state in-
teractions. Thus, in principle one can test the validity of
the factorization ansatz by measuring the rates for these
decays in future experiments. Furthermore, the non-
factorizable penguin contribution, if it exists (combined
with the smaller color-suppressed EW penguin) pV ≡
PV − (1/3)PEW,V can be measured in B+(0) → K̄∗+(0)

K̄
∗+(0)
2 . Also, supposing that PV is very small compared

to TV as usual, one can determine the magnitude of TV

by measuring the rate for B0 → ρ−a+
2 .

In the |∆S| = 1 decays, the (strong) penguin contribu-
tion P ′ is expected to dominate because of enhancement
by the ratio of the CKM elements |V ∗

tbVts|/|V ∗
ubVus| ≈ 50.

We note that the amplitudes for B+ → K∗0a+
2 and B+ →

ρ+K∗0
2 have only penguin contributions, respectively:

A(B+ → K∗0a+
2 ) = P ′

T − 1
3
PC′

EW,T , (9)

A(B+ → ρ+K∗0
2 ) = P ′

V − 1
3
PC′

EW,V . (10)

Thus the penguin contribution (combined with the smaller
color-suppressed EW penguin) p′

T ≡ P ′
T − (1/3)PC′

EW,T

is measured in B+ → K∗0a+
2 . Similarly, p′

V ≡ P ′
V −

(1/3)PC′
EW,V is determined in B+ → ρ+K∗0

2 . (In fact,
p′

V = 0 in factorization.) By comparing the branching ra-
tios for these two modes measured in experiment, one can
determine which contribution (i.e., p′

T or p′
V ) is larger.

The (additional penguin) SU(3) singlet amplitude S′ is
expected to be very small because of the Okubo–Zweig–
Iizuka (OZI) suppression. As in ∆S = 0 decays, there are
certain processes whose amplitudes can be expressed by
the SU(3) amplitudes, but are expected to vanish in fac-
torization: For instance, A(B+ → ρ+K∗0

2 ) is given by (10)
and A(B0 → ρ−K∗+

2 ) = − (T ′
V + P ′

V + (2/3)PC′
EW,V

)
.

Thus, in principle measurement of the rates for these de-
cays can be used to test the factorization ansatz. We also
note that the decay amplitudes for modes B+ → ρ0K∗+

2
and B0 → ρ0K∗0

2 can be respectively written as

A(B+ → ρ0K∗+
2 ) (11)

= − 1√
2

(
T ′

V + C ′
T + P ′

V + P ′
EW,T +

2
3
PC′

EW,V

)
,

A(B0 → ρ0K∗0
2 )

= − 1√
2

(
C ′

T − P ′
V + P ′

EW,T +
1
3
PC′

EW,V

)
. (12)

Since in factorization only the amplitudes having the sub-
script T do not vanish, we shall see that B(B+ → ρ0K∗+

2 )
= B(B0 → ρ0K∗0

2 ) in the factorization scheme, where
B denotes the branching ratio. Thus, if T ′

V or P ′
V is (not

zero and) not very suppressed compared to C ′
T , then there

would be a sizable discrepancy in the relation B(B+ →
ρ0K∗+

2 ) = B(B0 → ρ0K∗0
2 ), and in principle this can be

tested in experiment.

From Tables 1 and 2, we find some useful relations
among the decay amplitudes. The equivalence relations
are for the ∆S = 0 modes

1√
2
A(B+ → φa+

2 ) = A(B0 → φa0
2)

=
1
c
A(B0 → φf2) =

1
s
A(B0 → φf ′

2),

A(B+ → K∗+K̄∗0
2 ) = A(B0 → K∗0K̄∗0

2 ),
A(B+ → K̄∗0K∗+

2 ) = A(B0 → K̄∗0K∗0
2 ), (13)

and for the |∆S| = 1 modes

A(B+ → φK∗+
2 ) = A(B0 → φK∗0

2 ). (14)

The quadrangle relations are for the ∆S = 0 processes

1
c
A(B+ → ρ+f2) − 1

s
A(B+ → ρ+f ′

2)

=
√
2
[
1
c
A(B0 → ρ0f2) − 1

s
A(B0 → ρ0f ′

2)
]

=
√
2
[
1
c
A(B0 → ωf2) − 1

s
A(B0 → ωf ′

2)
]
, (15)

and for the |∆S| = 1 processes

A(B+ → K∗0a+
2 ) +

√
2A(B+ → K∗+a0

2)

=
√
2A(B0 → K∗0a0

2) +A(B0 → K∗+a−
2 ),

1
c
A(B+ → K∗+f2) − 1

s
A(B+ → K∗+f ′

2)

=
1
c
A(B0 → K∗0f2) − 1

s
A(B0 → K∗0f ′

2),

A(B+ → ρ+K∗0) +
√
2A(B+ → ρ0K∗+)

= A(B0 → ρ−K∗+) +
√
2A(B0 → ρ0K∗0

2 ), (16)

where c ≡ cosφT and s ≡ sinφT . Note that the above
relations are derived purely based on flavor SU(3) sym-
metry. In the factorization scheme (neglecting the SU(3)
amplitudes with the subscript V ) we would have in addi-
tion the approximate relations as follows1. The following
factorization relation would hold:

√
2A(B+ → ρ+a0

2) ≈ A(B0 → ρ+a−
2 ). (17)

The quadrangle relations given in (15) and (16) would be
divided into the following factorization relations: for the
∆S = 0 processes

1
c
A(B+ → ρ+f2) ≈ 1

s
A(B+ → ρ+f ′

2),

1
c
A(B0 → ρ0f2) ≈ 1

s
A(B0 → ρ0f ′

2),

1
c
A(B0 → ωf2) ≈ 1

s
A(B0 → ωf ′

2), (18)

1 Considering SU(3) breaking effects, we use the symbol ≈
in the following relations instead of the equivalence symbol =
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and for the |∆S| = 1 processes
√
2A(B+ → K∗+a0

2) ≈ A(B0 → K∗+a−
2 ),

A(B+ → K∗0a+
2 ) ≈

√
2A(B0 → K∗0a0

2),
1
c
A(B+ → K∗+f2) ≈ 1

s
A(B+ → K∗+f ′

2),

1
c
A(B0 → K∗0f2) ≈ 1

s
A(B0 → K∗0f ′

2),

A(B+ → ρ0K∗+
2 ) ≈ A(B0 → ρ0K∗0

2 ),

A(B+ → ωK∗+
2 ) ≈ A(B0 → ωK∗0

2 ). (19)

Therefore, in principle the above relations given in (17),
(18) and (19) provide an interesting way to test the factor-
ization scheme by measuring and comparing magnitudes
of the decay amplitudes involved in the relations. In a con-
sideration of SU(3) breaking effects, the relation in (17) is
best to use, because in fact this relation arises from isospin
symmetry assuming CV = PV = PEW,V = PC

EW,V = 0.
(However, if CV is negligibly small (though not zero) com-
pared to TT , (17) will approximately hold.)

4 Analysis of B → V T
using the Isgur–Scora–Grinstein–Wise model

The unpolarized decay rate for B → V T is given by

Γ (B → V T ) =
G2

F

48πm4
T

mV f2
V

×|{V ∗
ubVud(s) · (a1 or a2) − V ∗

tbVtd(s) · (ai
′s)}|2

· [X|pV |7 + Y|pV |5 + Z|pV |3], (20)

where |pV | is the magnitude of the three-momentum of the
final state particle V or T (|pV | = |pT |) in the rest frame
of the B meson. The effective coefficients ai are defined as
ai = ceffi + ξceffi+1 (i = odd) and ai = ceffi + ξceffi−1 (i = even)
with the effective WC’s ceffi at the scale mb [11,12], and
by treating ξ ≡ 1/Nc (Nc denotes the effective number of
color) as an adjustable parameter. The factors X , Y, and
Z, respectively, are given by

X = 8m4
Bb2+,

Y = 2m2
B

[
6m2

V m2
Th2 + 2(m2

B − m2
T − m2

V )kb+ + k2] ,
Z = 5m2

Tm2
V k2. (21)

Here we have summed over polarizations of the tensor
meson T . The CP asymmetry, ACP , is defined by

ACP =
B(B → f) − B(B̄ → f̄)
B(B → f) + B(B̄ → f̄)

, (22)

where B and f denote b quark and a generic final state,
respectively.

In passing, we present a set of relations between a fla-
vor SU(3) amplitude involved in B → V T decays and a
corresponding amplitude in the generalized factorization,

which bridge both approaches in B → V T decays as fol-
lows [13] (Note that all the SU(3) amplitudes with the
subscript P , such as T

(′)
P etc., vanish because these are

proportional to the matrix element 〈T |jµ|0〉.):

T
(′)
T = i

GF√
2
V ∗

ubVud(s)(mV fV ε∗αβFB→T
αβ (m2

V ))a1,

C
(′)
T = i

GF√
2
V ∗

ubVud(s)(mV fV ε∗αβFB→T
αβ (m2

V ))a2,

S
(′)
T = −i

GF√
2
V ∗

tbVtd(s)(mV fV ε∗αβFB→T
αβ (m2

V ))

×(a3 + a5),

P
(′)
T = −i

GF√
2
V ∗

tbVtd(s)(mV fV ε∗αβFB→T
αβ (m2

V ))a4,

P
(′)
EW,T = −i

GF√
2
V ∗

tbVtd(s)(mV fV ε∗αβFB→T
αβ (m2

V ))

×3
2
(a7 + a9),

P
C(′)
EW,T = −i

GF√
2
V ∗

tbVtd(s)(mV fV ε∗αβFB→T
αβ (m2

V ))

×3
2
a10, (23)

where

FB→T
αβ (m2

V )

= εµ
∗(pB + pT )ρ

[
ih(m2

V ) · εµνρσgαν(pV )β(pV )σ (24)

+k(m2
V ) · δµ

αδ
ρ
β + b+(m2

V ) · (pV )α(pV )βg
µρ
]
.

Using the above relations (23), one can easily write
down in the factorization scheme the amplitude of any
B → V T mode shown in Tables 1 and 2. For example,
from Table 1 and the relations (23), the amplitude of the
process B+ → ρ+a0

2 can be written as

A(B+ → ρ+a0
2) = − 1√

2

(
TT + CV + PT − PV + PEW,V

+
2
3
PC

EW,T +
1
3
PC

EW,V

)

=
GF√
2

(
mρ+fρ+ε∗αβF

B→a0
2

αβ (m2
ρ+)
)

× [V ∗
ubVuda1 − V ∗

tbVtd(a4 + a10)] , (25)

where we have used the fact that CV , PV , PEW,V , and
PC

EW,V with the subscript V all vanishing in factorization.
Expressions for all the amplitudes of B → V T decays are
given in the appendix as calculated in the factorization
scheme.

We calculate the branching ratios and CP asymme-
tries for B → V T decay modes for various input param-
eter values [7,11]. The predictions are sensitive to several
input parameters, such as the form factors, the strange
quark mass, the parameter ξ ≡ 1/Nc, the CKM matrix el-
ements and in particular, the weak phase γ. The following
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Table 3. The branching ratios for B → V T decay modes with ∆S = 0. The second
and the third columns correspond to the cases of sets of the parameters: {ξ = 0.1,
ms = 85 MeV, γ = 110◦} and {ξ = 0.1, ms = 100MeV, γ = 65◦}, respectively.
Similarly, the fourth and the fifth columns corresponds to the cases: {ξ = 0.3,
ms = 85MeV, γ = 110◦} and {ξ = 0.3, ms = 100MeV, γ = 65◦}, respectively. The
sixth and the seventh columns correspond to the cases: {ξ = 0.5, ms = 85MeV,
γ = 110◦} and {ξ = 0.5, ms = 100MeV, γ = 65◦}, respectively

Decay mode B(10−8) B(10−8) B(10−8) B(10−8) B(10−8) B(10−8)

B+ → ρ+a0
2 21.93 22.17 19.46 19.70 17.13 17.37

B+ → ρ+f2 23.33 23.58 20.70 20.95 18.23 18.48
B+ → ρ+f ′

2 0.26 0.26 0.23 0.23 0.20 0.20
B+ → ρ0a+

2 0.84 0.78 0.046 0.033 1.10 1.16
B+ → ωa+

2 0.77 0.77 0.039 0.034 1.18 1.28
B+ → φa+

2 0.064 0.053 0.006 0.006 0.022 0.012
B+ → K̄∗0K∗+

2 0.062 0.041 0.053 0.033 0.045 0.027
B0 → ρ+a−

2 40.72 41.16 36.13 36.57 31.81 32.26
B0 → ρ0a0

2 0.39 0.36 0.022 0.015 0.51 0.54
B0 → ρ0f2 0.42 0.38 0.023 0.016 0.55 0.57
B0 → ρ0f ′

2 0.005 0.004 0.0003 0.0002 0.006 0.006
B0 → ωa0

2 0.36 0.36 0.018 0.016 0.55 0.60
B0 → ωf2 0.38 0.38 0.019 0.017 0.58 0.63
B0 → ωf ′

2 0.004 0.004 0.0002 0.0002 0.006 0.007
B0 → φa0

2 0.030 0.025 0.003 0.003 0.010 0.006
B0 → φf2 0.030 0.025 0.003 0.003 0.010 0.006
B0 → φf ′

2 0.0004 0.0003 0 0 0.0001 0
B0 → K̄∗0K∗0

2 0.12 0.076 0.098 0.062 0.082 0.050

values of the decay constants (in MeV units) are used for
our numerical calculations [12,14,15]:

fρ = 216, fω = 216, fφ = 236, fK∗ = 222.

The values of the form factors for the B → T transition
are calculated in the ISGW model [6].

The branching ratios for B → V T decay modes with
∆S = 0 are shown in Table 3. Among the ∆S = 0 modes,
the decay modes B+ → ρ+a0

2, B+ → ρ+f2, and B0 →
ρ+a−

2 have relatively large branching ratios of a few times
10−7. The branching ratio for B+ → ρ+f ′

2 is much smaller
than that for B+ → ρ+f2 by about two orders of mag-
nitude, because the former decay rate is proportional to
sinφT = 0.13, instead of cosφT = 0.99, which is a propor-
tionality factor of the latter decay rate. This prediction is
consistent with that based on flavor SU(3) symmetry. We
see that in the factorization scheme the following equality
between the branching ratios holds for any set of the pa-
rameters given above: 2B(B+ → ρ+a0

2) ≈ B(B0 → ρ+a−
2 ),

as discussed in (17). (A little deviation from the exact
equality arises from breaking of the isospin symmetry.)
We also see from Table 3 that B(B+ → ρ0a+

2 ) is much
smaller than B(B+ → ρ+a0

2) by an order of magnitude or
even three orders of magnitude depending on the values
of the input parameters. This is because in factorization
the dominant contribution to the former mode arises from
the color-suppressed tree diagram (CT ) and further the CT

destructively interferes with PT , while the dominant one

to the latter mode arises from the color-favored tree dia-
gram (TT ) and the TT constructively interferes with PT .
We note that B(B+ → ρ0a

+(0)
2 ) ≈ B(B+ → ωa

+(0)
2 ) and

B(B+ → ρ0f
(′)
2 ) ≈ B(B+ → ωf

(′)
2 ), as is expected from

the fact that ρ0 and ω have a similar quark content and
the decay amplitudes for the modes having ρ0 in the final
state are similar to those for the modes having ω in the
final state (some differences appear only in the penguin di-
agram contributions which are small in ∆S = 0 decays).
The branching ratios of most processes are of order of 10−8

or less. The CP asymmetries ACP in ∆S = 0 decays are
shown in Table 4. The CP asymmetries for B+ → ρ0a+

2
and B+ → ωa+

2 can be as large as 27% and 49%, respec-
tively, with the branching ratio of O(10−8) for ξ = 0.5.

In Table 7, we show the ratio B(B → V T )/B(B →
PT ) for ∆S = 0 decays, where the quark contents of
V and P are identical. For comparison, we choose the
modes B+ → ρ+a0

2 (B+ → π+a0
2), B+ → ρ+f2 (B+ →

π+f2), and B0 → ρ+a−
2 (B0 → π+a−

2 ) in B → V T
(B → PT ) whose decay amplitudes have the dominant
tree diagram contribution TT . For these modes, the ratio
B(B → V T )/B(B → PT ) can be written

B(B → V T )
B(B → PT )

≈ mV f2
V [X|pV |7 + Y|pV |5 + Z|pV |3]
2|pP |5m2

Bf2
P [FB→T (m2

P )]2
.

(26)
In this ratio, the dependence on GF, the CKM matrix
elements, and the effective coefficients ai do not appear.
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Table 4. The CP asymmetries for B → V T decay modes with ∆S = 0. The
definitions for the columns are the same as those in Table 3

Decay mode ACP ACP ACP ACP ACP ACP

B+ → ρ+a0
2 −0.073 −0.070 −0.072 −0.069 −0.071 −0.068

B+ → ρ+f2 −0.073 −0.070 −0.072 −0.069 −0.071 −0.068
B+ → ρ+f ′

2 −0.073 −0.070 −0.072 −0.069 −0.071 −0.068
B+ → ρ0a+

2 −0.34 −0.36 0.66 0.91 0.27 0.25
B+ → ωa+

2 0.017 0.016 −0.72 −0.79 −0.49 −0.44
B+ → φa+

2 0 0 0 0 0 0
B+ → K̄∗0K∗+

2 0 0 0 0 0 0
B0 → ρ+a−

2 −0.073 −0.070 −0.072 −0.069 −0.071 −0.068
B0 → ρ0a0

2 −0.34 −0.36 0.66 0.91 0.27 0.25
B0 → ρ0f2 −0.34 −0.36 0.66 0.91 0.27 0.25
B0 → ρ0f ′

2 −0.34 −0.36 0.66 0.91 0.27 0.25
B0 → ωa0

2 0.017 0.016 −0.72 −0.79 −0.49 −0.44
B0 → ωf2 0.017 0.016 −0.72 −0.79 −0.49 −0.44
B0 → ωf ′

2 0.017 0.016 −0.72 −0.79 −0.49 −0.44
B0 → φa0

2 0 0 0 0 0 0
B0 → φf2 0 0 0 0 0 0
B0 → φf ′

2 0 0 0 0 0 0
B0 → K̄∗0K∗0

2 0 0 0 0 0 0

Table 5. The branching ratios for B → V T decay modes with |∆S| = 1. The
definitions for the columns are the same as those in Table 3

Decay mode B(10−8) B(10−8) B(10−8) B(10−8) B(10−8) B(10−8)

B+ → K∗+a0
2 10.78 5.97 9.74 5.40 8.75 4.88

B+ → K∗+f2 11.20 6.19 10.11 5.61 9.09 5.06
B+ → K∗+f ′

2 0.14 0.078 0.13 0.070 0.11 0.064
B+ → K∗0a+

2 16.45 16.45 12.97 12.97 9.91 9.91
B+ → ρ0K∗+

2 0.59 0.81 0.57 0.55 0.62 0.39
B+ → ωK∗+

2 5.30 4.70 0.029 0.035 3.91 3.28
B+ → φK∗+

2 2.52 2.52 10.39 10.39 23.66 23.66
B0 → K∗+a−

2 20.48 11.33 18.50 10.27 16.62 9.26
B0 → K∗0a0

2 7.65 7.65 6.03 6.03 4.61 4.61
B0 → K∗0f2 7.94 7.94 6.26 6.26 4.78 4.78
B0 → K∗0f ′

2 0.10 0.10 0.079 0.079 0.060 0.060
B0 → ρ0K∗0

2 0.54 0.75 0.53 0.50 0.57 0.36
B0 → ωK∗0

2 4.87 4.32 0.027 0.032 3.60 3.02
B0 → φK∗0

2 2.34 2.34 9.64 9.64 21.96 21.96

The ratio depends only on the form factors for B → T
calculated in the ISGWmodel, in addition to the masses of
P , V and T , and the decay constants fP and fV . Thus, the
ISGW model and the factorization scheme can be tested
by measuring the above ratio for different modes, as shown
in Table 7, in future experiments. Table 7 shows that the
ratio for ∆S = 0 decays are indeed insensitive to different
values of the input parameters, such as ξ and the weak
phase γ, and are in between 0.473 and 0.495.

The branching ratios and CP asymmetries for |∆S| =
1 decay processes are shown in Table 5 and 6, respectively.
In |∆S| = 1 decays, the relevant penguin diagrams give a

dominant contribution to the decay rates. We see that the
branching ratios for |∆S| = 1 decays are in the range be-
tween O(10−7) and O(10−10), similar to those for ∆S = 0
decays. The processes B+ → K∗+a0

2, K
∗+f2, K∗0a+

2 , and
B0 → K∗+a−

2 , K
∗0a0

2, K
∗0f2 have relatively large branch-

ing ratios of O(10−7)–O(10−8), since the amplitudes for
these modes have the dominant penguin contribution P ′

T .
We note that the branching ratios for B → ωK∗

2 and
B → φK∗

2 vary strongly depending on ξ. This is mainly be-
cause the amplitudes for these modes have the singlet pen-
guin contribution S′

T and the magnitude of S′
T strongly

depends on the value of ξ in the factorization scheme. Un-
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Table 6. The CP asymmetries for B → V T decay modes with |∆S| = 1. The
definitions for the columns are the same as those in Table 3

Decay mode ACP ACP ACP ACP ACP ACP

B+ → K∗+a0
2 −0.15 −0.26 −0.14 −0.25 −0.14 −0.24

B+ → K∗+f2 −0.15 −0.26 −0.14 −0.25 −0.14 −0.24
B+ → K∗+f ′

2 −0.15 −0.26 −0.14 −0.25 −0.14 −0.24
B+ → K∗0a+

2 0 0 0 0 0 0
B+ → ρ0K∗+

2 −0.006 −0.004 0.001 0.001 0.007 0.010
B+ → ωK∗+

2 −0.035 −0.038 0.107 0.088 −0.041 −0.047
B+ → φK∗+

2 0 0 0 0 0 0
B0 → K∗+a−

2 −0.15 −0.26 −0.14 −0.25 −0.14 −0.24
B0 → K∗0a0

2 0 0 0 0 0 0
B0 → K∗0f2 0 0 0 0 0 0
B0 → K∗0f ′

2 0 0 0 0 0 0
B0 → ρ0K∗0

2 −0.006 −0.004 0.001 0.001 0.007 0.010
B0 → ωK∗0

2 −0.035 −0.038 0.107 0.088 −0.041 −0.047
B0 → φK∗0

2 0 0 0 0 0 0

Table 7. Ratios of the branching ratios for B → V T and for B → PT decay modes, where
V and P have identical quark contents. The second and the third columns correspond to the
cases of sets of the parameters: {ms = 85MeV, γ = 110◦} and {ms = 100MeV, γ = 65◦},
respectively. In both cases, the values of ξ vary from 0.1 to 0.5

Ratio ms = 85MeV, γ = 110◦ ms = 100MeV, γ = 65◦

B(B+ → ρ+a0
2) / B(B+ → π+a0

2) 0.482−0.483 0.495
B(B+ → ρ+f2) / B(B+ → π+f2) 0.472−0.473 0.484−0.485
B(B0 → ρ+a−

2 ) / B(B0 → π+a−
2 ) 0.473−0.474 0.485−0.486

B(B+ → K∗+a0
2) / B(B+ → K+a0

2) 2.50−2.55 1.03−1.10
B(B+ → K∗+f2) / B(B+ → K+f2) 2.39−2.50 0.99−1.05
B(B0 → K∗+a−

2 ) / B(B0 → K+a−
2 ) 2.51−2.63 1.04−1.10

like ∆S = 0 decays such as B → ωa2 and B → φa2, in
|∆S| = 1 decays such as B → ωK∗

2 and B → φK∗
2 the tree

contribution is suppressed compared to the penguin con-
tribution. Further, in the mode B → ωK∗

2 , the amplitude
2S′

T is the only strong penguin contribution so that the
branching ratio for this mode varies strongly depending on
ξ (even though S′

T is expected to be small due to the OZI
suppression). In B → φK∗

2 , the amplitude P ′
T + S′

T is the
relevant strong penguin contribution, and in factorization
S′

T can become comparable (with the opposite sign) to P ′
T

for certain values of ξ, say, ξ = 0 so that the branching
ratio for this mode strongly depends on ξ. Table 6 shows
the CP asymmetries ACP in |∆S| = 1 decays. ACP ’s in
most modes are expected to be small. In B+ → K∗+a0

2,
B+ → K∗+f2, and B0 → K∗+a−

2 , ACP can be about
15%–25% with the branching ratios of O(10−7)–O(10−8).

In Table 7, we show the ratio B(B → V T )/B(B →
PT ) for the modes B+ → K∗+a0

2 (B+ → K+a0
2), B

+ →
K∗+f2 (B+ → K+f2), and B0 → K∗+a−

2 (B0 → K+a−
2 )

in B → V T (B → PT ) whose amplitudes have the domi-
nant penguin contribution P ′

T . For these modes, the ratio
B(B → V T )/B(B → PT ) can be approximately expressed
as (26), but unlike the ∆S = 0 case, in this case, a depen-
dence of the ratio on the weak phase γ and the strange

quark mass ms remains, due to the effect of the suppressed
tree diagram T ′

T and the ms-dependence of B(B → PT ).
In the table, the second and the third columns correspond
to the cases of sets of the parameters: {ms = 85MeV,
γ = 110◦} and {ms = 100MeV, γ = 65◦}, respectively.
In both cases, the values of ξ vary from 0.1 to 0.5. The
result shows two different ranges of values of the ratio: in
the former case (the second column), the ratio is about
2.5, while in the latter case (the third column), the ratio
is about 1.0. Given values of ms and γ, the ratio is almost
independent of the value of ξ.

5 Conclusion

We have analyzed exclusive charmless decays B → V T
in the frameworks of both flavor SU(3) symmetry and
generalized factorization. Using the flavor SU(3) symme-
try, we have shown that certain decay modes, such as
B+ → ρ+a0

2, ρ+f2 and B0 → ρ+a−
2 in ∆S = 0 decays,

and B+ → K∗+f2, K∗0a+
2 and B0 → K∗+a−

2 in |∆S| = 1
decays, are expected to have the largest decay rates, so
these modes can be preferable to find in future experi-
ments. Certain ways to test the validity of the factoriza-
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tion scheme have been presented by emphasizing interplay
between both approaches and carefully combining the pre-
dictions from both approaches. We have also shown that
B meson decays to two tensor mesons in the final state
do not happen in the factorization scheme, which can be
tested in future experiments.

We have calculated the branching ratios and CP asym-
metries for B → V T decays, using the full effective Hamil-
tonian including all the penguin operators which are es-
sential to analyze the |∆S| = 1 processes and to calculate
CP asymmetries. We have also used the non-relativistic
quark model proposed by Isgur, Scora, Grinstein, and
Wise to obtain the form factors describing B → T tran-
sitions. As shown in Tables 3 and 5, the branching ratios
vary from O(10−7) to O(10−10). Consistent with the pre-
diction from the flavor SU(3) analysis, the decay modes
such as B+ → ρ+a0

2, ρ+f2, B0 → ρ+a−
2 and B+(0) →

K
∗0(+)
2 a

+(−)
2 have branching ratios of order of 10−7. We

have identified the decay modes where the CP asym-
metries are expected to be large, such as B+ → ρ0a+

2
and B+ → ωa+

2 in ∆S = 0 decays, and B+ → K∗+a0
2,

B+ → K∗+f2, and B0 → K∗+a−
2 in |∆S| = 1 decays.

Due to possible uncertainties in the hadronic form fac-
tors of B → V T and non-factorization effects, the pre-
dicted branching ratios could be increased. We have also
presented the ratio B(B → V T )/B(B → PT ) for ∆S = 0
and |∆S| = 1 decays, which primarily depends on the form
factors for B → T , especially in the ∆S = 0 case. Thus,
measurement of this ratio for different modes in future ex-
periments can test the ISGW modes and the factorization
ansatz. Although experimentally challenging, the exclu-
sive charmless decays, B → V T , can probably be carried
out in detail at hadronic B experiments such as BTeV and
LHC-B, where more than 1012 B mesons will be produced
per year, as well as at present asymmetric B factories of
Belle and Babar.
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Appendix

In this appendix, we present expressions for all the decay
amplitudes of B → V T modes shown in Tables 1 and 2
as calculated in the factorization scheme. Below we use
FB→T

αβ defined in (24).

(1) B → V T (∆S = 0) decays.

A(B+ → ρ+a0
2) =

GF

2

(
mρ+fρ+ε∗αβF

B→a0
2

αβ (m2
ρ+)
)

× {V ∗
ubVuda1 − V ∗

tbVtd(a4 + a10)} , (27)

A(B+ → ρ+f2) =
GF

2

(
mρ+fρ+ε∗αβFB→f2

αβ (m2
ρ+)
)

× {V ∗
ubVudca1 − V ∗

tbVtdc(a4 + a10)} , (28)

A(B+ → ρ+f ′
2) =

GF

2

(
mρ+fρ+ε∗αβF

B→f ′
2

αβ (m2
ρ+)
)

× {V ∗
ubVudsa1 − V ∗

tbVtds(a4 + a10)} , (29)

A(B+ → ρ0a+
2 ) =

GF

2

(
mρ0fρ0ε∗αβF

B→a+
2

αβ (m2
ρ0)
)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

×
[
−a4 +

3
2
(a7 + a9) +

1
2
a10

]}
, (30)

A(B+ → ωa+
2 ) =

GF

2

(
mωfωε

∗αβF
B→a+

2
αβ (m2

ω)
)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

×
[
2(a3 + a5) + a4 +

1
2
(a7 + a9) − 1

2
a10

]}
, (31)

A(B+ → φa+
2 ) =

GF√
2

(
mφfφε

∗αβF
B→a+

2
αβ (m2

φ)
)

×
{

−V ∗
tbVtd

[
(a3 + a5) − 1

2
(a7 + a9)

]}
, (32)

A(B+ → K̄∗0K∗+
2 )

=
GF√
2

(
mK̄∗0fK̄∗0ε∗αβF

B→K∗+
2

αβ (m2
K̄∗0)

)

×
{

−V ∗
tbVtd

[
a4 − 1

2
a10

]}
, (33)

A(B+ → K̄∗+K̄0
2 ) = 0, (34)

A(B0 → ρ+a−
2 ) =

GF√
2

(
mρ+fρ+ε∗αβF

B→a−
2

αβ (m2
ρ+)
)

×[V ∗
ubVuda1 − V ∗

tbVtd(a4 + a10)], (35)
A(B0 → ρ−a+

2 ) = 0, (36)

A(B0 → ρ0a0
2) =

GF

2
√
2

(
mρ0fρ0ε∗αβF

B→a0
2

αβ (m2
ρ0)
)

×
{
V ∗

ubVuda2

−V ∗
tbVtd

[
−a4 +

3
2
(a7 + a9) +

1
2
a10

]}
, (37)

A(B0 → ρ0f2) =
GF

2
√
2

(
mρ0fρ0ε∗αβFB→f2

αβ (m2
ρ0)
)

×
{
V ∗

ubVudca2

−V ∗
tbVtdc

[
−a4 +

3
2
(a7 + a9) +

1
2
a10

]}
, (38)

A(B0 → ρ0f ′
2) =

GF

2
√
2

(
mρ0fρ0ε∗αβF

B→f ′
2

αβ (m2
ρ0)
)
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×
{
V ∗

ubVudsa2

−V ∗
tbVtds

[
−a4 +

3
2
(a7 + a9) +

1
2
a10

]}
, (39)

A(B0 → ωa0
2) =

GF

2
√
2

(
mωfωε

∗αβF
B→a0

2
αβ (m2

ω)
)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
2(a3 + a5) + a4

+
1
2
(a7 + a9) − 1

2
a10

]}
, (40)

A(B0 → ωf2) =
GF

2
√
2

(
mωfωε

∗αβFB→f2
αβ (m2

ω0)
)

×
{
V ∗

ubVudca2 − V ∗
tbVtdc

[
2(a3 + a5) + a4

+
1
2
(a7 + a9) − 1

2
a10

]}
, (41)

A(B0 → ωf ′
2) =

GF

2
√
2

(
mωfωε

∗αβF
B→f ′

2
αβ (m2

ω)
)

×
{
V ∗

ubVudsa2 − V ∗
tbVtds

[
2(a3 + a5) + a4

+
1
2
(a7 + a9) − 1

2
a10

]}
, (42)

A(B0 → φa0
2) =

GF

2

(
mφfφε

∗αβF
B→a0

2
αβ (m2

φ)
)

×
{

−V ∗
tbVtd

[
(a3 + a5) − 1

2
(a7 + a9)

]}
, (43)

A(B0 → φf2) =
GF

2

(
mφfφε

∗αβFB→f2
αβ (m2

φ)
)

×
{

−V ∗
tbVtdc

[
(a3 + a5) − 1

2
(a7 + a9)

]}
, (44)

A(B0 → φf ′
2) =

GF

2

(
mφfφε

∗αβF
B→f ′

2
αβ (m2

φ)
)

×
{

−V ∗
tbVtds

[
(a3 + a5) − 1

2
(a7 + a9)

]}
, (45)

A(B0 → K̄∗0K∗0
2 )

=
GF√
2

(
mK̄∗0fK̄∗0ε∗αβF

B→K∗0
2

αβ (m2
K̄∗0)

)

×
{

−V ∗
tbVtd

[
a4 − 1

2
a10

]}
, (46)

A(B0 → K∗0K̄∗0
2 ) = 0. (47)

(2) B → V T (|∆S| = 1) decays.

A(B+ → K∗+a0
2)

=
GF

2

(
mK∗+fK∗+ε∗αβF

B→a0
2

αβ (m2
K∗+)

)
× {V ∗

ubVusa1 − V ∗
tbVts(a4 + a10)} , (48)

A(B+ → K∗+f2)

=
GF

2

(
mK∗+fK∗+ε∗αβFB→f2

αβ (m2
K∗+)

)
× {V ∗

ubVusca1 − V ∗
tbVtsc(a4 + a10)} , (49)

A(B+ → K∗+f ′
2)

=
GF

2
(
mK∗+fK∗+ε∗αβFB→T

αβ (m2
V )
)

× {V ∗
ubVussa1 − V ∗

tbVtss(a4 + a10)} , (50)
A(B+ → K∗0a+

2 )

=
GF√
2

(
mK∗0fK∗0ε∗αβF

B→a+
2

αβ (m2
K∗0)

)

×
{

−V ∗
tbVts

(
a4 − 1

2
a10

)}
, (51)

A(B+ → ρ+K∗0
2 ) = 0, (52)

A(B+ → ρ0K∗+
2 )

=
GF

2

(
mρ0fρ0ε∗αβF

B→K∗+
2

αβ (m2
ρ0)
)

×
{
V ∗

ubVusa2 − V ∗
tbVts

3
2
(a7 + a9)

}
, (53)

A(B+ → ωK∗+
2 ) =

GF

2

(
mωfωε

∗αβF
B→K∗+

2
αβ (m2

ω)
)

×
{
V ∗

ubVusa2

−V ∗
tbVts

[
2(a3 + a5) +

1
2
(a7 + a9)

]}
, (54)

A(B+ → φK∗+
2 ) =

GF√
2

(
mφfφε

∗αβF
B→K∗+

2
αβ (m2

φ)
)

×
{

−V ∗
tbVts

[
a3 + a4 + a5

−1
2
(a7 + a9 + a10)

]}
, (55)

A(B0 → K∗+a−
2 )

=
GF√
2

(
mK∗+fK∗+ε∗αβF

B→a−
2

αβ (m2
K∗+)

)
× {V ∗

ubVusa1 − Vtb
∗Vts(a4 + a10)} , (56)

A(B0 → K∗0a0
2) =

GF

2

(
mK∗0fK∗0ε∗αβF

B→a0
2

αβ (m2
K∗0)

)
×
{

−V ∗
tbVts

(
a4 − 1

2
a10

)}
, (57)

A(B0 → K∗0f2) =
GF

2

(
mK∗0fK∗0ε∗αβFB→f2

αβ (m2
K∗0)

)
×
{

−V ∗
tbVtsc

(
a4 − 1

2
a10

)}
, (58)

A(B0 → K∗0f ′
2) =

GF

2

(
mK∗0fK∗0ε∗αβF

B→f ′
2

αβ (m2
K∗0)

)
×
{

−V ∗
tbVtss

(
a4 − 1

2
a10

)}
, (59)

A(B0 → ρ−K∗+
2 ) = 0, (60)

A(B0 → ρ0K∗0
2 ) =

GF

2

(
mρ0fρ0ε∗αβF

B→K∗0
2

αβ (m2
ρ0)
)
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×
{
V ∗

ubVusa2 − V ∗
tbVts

3
2
(a9 + a7)

}
, (61)

A(B0 → ωK∗0
2 ) =

GF

2

(
mωfωε

∗αβF
B→K∗0

2
αβ (m2

ω)
)

×
{
V ∗

ubVusa2

− V ∗
tbVts

[
2(a3 + a5) +

1
2
(a7 + a9)

]}
, (62)

A(B0 → φK∗0
2 ) =

GF√
2

(
mφfφε

∗αβF
B→K∗0

2
αβ (m2

φ)
)

×
{

−V ∗
tbVts

[
a3 + a4 + a5

−1
2
(a7 + a9 + a10)

]}
. (63)
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